Next book

VISIONS OF INFINITY

THE GREAT MATHEMATICAL PROBLEMS

Stewart’s imaginative, often-witty anecdotes, analogies and diagrams succeed in illuminating many but not all of some very...

An aggressively unsimplified account of 14 great problems, emphasizing how mathematicians approached but did not always solve them.

Fermat’s Last Theorem, 350 years old and solved by Andrew Wiles in 1995, produced headlines because laymen were amazed that mathematicians could make new discoveries. In fact, mathematics is as creative as physics, writes prolific popularizer Stewart (Mathematics Emeritus/Univ. of Warwick; The Mathematics of Life, 2011): “Mathematics is newer, and more diverse, than most of us imagine.” Goldbach’s Conjecture—that every even number can be written as the sum of two prime numbers (250 years old, probably true but not proven)—provides the background for a chapter on the unruly field of prime numbers: those divisible only by one and itself (3, 5, 7, 11, 13…). Squaring the Circle—constructing a square with an area identical to a given circle (2,500 years old; proven impossible)—introduces pi. Schoolchildren learn that pi is the ratio of the circumference of a circle to its diameter, but it’s a deeply important number that turns up everywhere in mathematics. Most readers know that Newton’s laws precisely predict motions of two bodies, but few know that they flop with three. The Three-body Problem (330 years old, unsolved) continues to worry astronomers since it hints that gravitational forces among three or more bodies may be unstable, so the planets may eventually fly off.

Stewart’s imaginative, often-witty anecdotes, analogies and diagrams succeed in illuminating many but not all of some very difficult ideas. It will enchant math enthusiasts as well as general readers who pay close attention.

Pub Date: March 1, 2013

ISBN: 978-0-465-02240-3

Page Count: 320

Publisher: Basic Books

Review Posted Online: Dec. 10, 2012

Kirkus Reviews Issue: Jan. 1, 2013

Categories:
Next book

NUTCRACKER

This is not the Nutcracker sweet, as passed on by Tchaikovsky and Marius Petipa. No, this is the original Hoffmann tale of 1816, in which the froth of Christmas revelry occasionally parts to let the dark underside of childhood fantasies and fears peek through. The boundaries between dream and reality fade, just as Godfather Drosselmeier, the Nutcracker's creator, is seen as alternately sinister and jolly. And Italian artist Roberto Innocenti gives an errily realistic air to Marie's dreams, in richly detailed illustrations touched by a mysterious light. A beautiful version of this classic tale, which will captivate adults and children alike. (Nutcracker; $35.00; Oct. 28, 1996; 136 pp.; 0-15-100227-4)

Pub Date: Oct. 28, 1996

ISBN: 0-15-100227-4

Page Count: 136

Publisher: Harcourt

Review Posted Online: May 19, 2010

Kirkus Reviews Issue: Aug. 15, 1996

Categories:
Next book

THE ELEMENTS OF STYLE

50TH ANNIVERSARY EDITION

Stricter than, say, Bergen Evans or W3 ("disinterested" means impartial — period), Strunk is in the last analysis...

Privately published by Strunk of Cornell in 1918 and revised by his student E. B. White in 1959, that "little book" is back again with more White updatings.

Stricter than, say, Bergen Evans or W3 ("disinterested" means impartial — period), Strunk is in the last analysis (whoops — "A bankrupt expression") a unique guide (which means "without like or equal").

Pub Date: May 15, 1972

ISBN: 0205632645

Page Count: 105

Publisher: Macmillan

Review Posted Online: Oct. 28, 2011

Kirkus Reviews Issue: May 1, 1972

Categories:
Close Quickview